
The fury and frenzy of AI is all around us. In just a matter of four months, we have gone from worrying about the
 next AI winter to fretting over AI dictating every aspect of our lives. Every day brings a new AI application that 
pushes the boundary of possibilities even further — we were still grappling with ChatGPT when AutoGPT and 
LangChain introduced new levels of automation. 

Rebooting Data Strategy

Selecting the Optimal 
Database for Generative AI 

Organizations have to make a fundamental decision — whether to create their own LLM, train a general-purpose LLM
on private data or leverage a general-purpose LLM’s API. Each approach requires a unique set of skills and commitments: 

Despite all the attention AI is garnering, some high-profile missteps have reminded the world once again of 
“garbage in, garbage out.” If we ignore the underlying data management principles, then the output can’t be 
trusted. AI adoption will boost significantly once we can guarantee underlying training data’s veracity. 

However, the future has to contend with reality! Most business data today sits within corporate data sources — 
inside its firewall or outside, and not in the public domain internet. If we leverage large language models (LLMs) 
on this corpus of data, new possibilities emerge.

But, how does one exploit the power of LLMs on private data?

We're going to explore how technical professionals should evolve their data strategy and existing data infrastructure
 to leverage the influx of LLMs and unlock new insights. This document is not an exploration of LLMs, like OpenAI’s
 GPT-3, Facebook’s LLaMa and Google’s LaMDA.
 

Build your own LLM
Enables purpose-built models for specific tasks, e.g. 
data classification on Slack messages to identify PII. 
This approach requires deep AI skills within an 
organization, and is better suited for organizations 
with large and sophisticated IT teams. Training an 
LLM like GPT-4 also requires a massive 
infrastructure. 

Train a general-purpose LLM on your 
private data
This option uses model weights to fine-tune an existing 
model on a specific training set. It also requires deep 
knowledge of AI and an investment in infrastructure 
resources which can be quite high depending upon the 
size of your data. In addition, it has led to the creation 
of a new category, called LLMOps.

Call general LLMs’ APIs
This option uses model input, whereby context is 
inserted into an input message that is sent via 
APIs to an LLM. The model inputs need to be 
converted into vectors, which are explained in the 
following section. For organizations with modest 
IT skills and resources, this option is often the first 
foray into the space of leveraging generative AI. A 
new function, called prompt engineering, has 
emerged to develop accurate and relevant text 
prompts for AI models.
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Rebooting Data Strategy (CON’T) 

Persisting Data for LLMs

This document is focused on the third option of vectorizing data and creating embeddings because most organizations 

will not have the skills needed to build or train LLMs, but can leverage existing coding skills like Python. We define the 

inner workings of this approach in the following section. 

This option also consumes resources but at significantly lower levels than the two former options. Also, this option 

can allow fresh data to be available to the LLM in real time. 
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The table here shows the tradeoffs: 

Build own LLM 

Train an LLM 

Use an LLM API • Delivers data freshness

• Ability to chain LLMs

• Lower AI skills needed

• Lower cost and fast onboarding

• Specialized, with high accuracy

• Faster than building LLM

• Specialized, with high accuracy

• Confidentiality

• Requires deep AI skills

• Cost and time of training may be high due
to the use of GPUs (or TPUs)

• Inaccurate tuning can degrade performance 
and accuracy

• Training is batch, time consuming and expensive

• High vectorization latency 

• Lower precision in exchange for faster
onboarding of AI workloads

• More data preparation needed

Pros ConsOption

• Libraries with built-in embedding and vectorization
classes. New libraries have sprouted, such as FAISS 
(Facebook AI Similarity search), Spotify’s Annoy 
(approximate nearest neighbor oh yeah) and Google’s 
ScaNN (Scalable Nearest neighbor). The onus is on the 
developer to build the pipeline using the libraries to 
deliver the outcomes. 

• Native vector databases. The new wave of LLMs have 
led to a renewed interest in speciality databases built 
specifically to handle vectors including Pinecone, 
Weaviate and Zilliz’ Milvus.

• Non-relational DBMS. Search data stores like Elastic 
that already offered ‘inverted search’ are now being 
explored as an option to provide vector search. Also 
graph databases, like Neo4j, can be used for knowledge 
graphs in conjunction with LLMs.

• Relational DBMS. Databases, like SingleStoreDB and 
many others, already support vector embeddings with 
support for native semantic search functions — 
although these capabilities were not heavily 
emphasized in the past for traditional workloads. Now 
they are.

The second part of the data strategy is to identify what technologies to use to enable AI workloads. Does this require 

an altogether new tech stack, or can existing technologies be repurposed?

As this document is focused on using the option to leverage an existing LLM via APIs, the vectorized data and 

embeddings must be managed. There are two major types — short-term memory for LLMs that use APIs for model 

inputs, or long-term memory for LLMs that persist the model inputs.

In the following list, the first option is an example of short-term memory, and the others are for long-term memory.

https://www.singlestore.com/blog/why-your-vector-database-should-not-be-a-vector-database/


Persisting Data for LLMs (CON’T) 
The modern data stack was already bursting at the seams when 

generative AI became the talk of the town. There was already a rallying 

cry for simplification. So, rebooting the data strategy must support 

complexity reduction. 

This means exploring whether and how currently deployed data and 

analytical technologies can be utilized for the vector searches on private 

data. Hence, this document is focused on the last option of using an RDBMS.

SingleStoreDB has been used to illustrate the concepts.

Several new concepts and terms have been mentioned in this section, such as vectors and embeddings, so let’s 

demystify how exactly an AI search works. Please note that terms, like vector search, similarity search and semantic 

search are used interchangeably. Also, “prompt” and “ask” are often used to refer to model inputs.

Value Chain to Use LLMs on Private Data 

Selecting the Optimal Database for Generative AI  3

Enabling natural language search of enterprise data 
using a chatbot can significantly expand the number of 
data consumers and use cases. Besides the search, 
these new workloads can further leverage the power 
of LLMs, which use deep neural network algorithms to 
perform advanced tasks, such as summarizing 
documents, ranking and recommendations, etc.

Let’s say for example, you search for a very specific 
product on a retailer’s website, and the product is not 
available. An additional API call to an LLM with your 
request that returned zero results may result in a list 
of similar products.

The current state of applications, like ChatGPT, use 
GTP-3 and GPT-4 LLMs, which have been trained on 
public data until Sep 2021. So, the LLM has no infor-
mation about World Cup Soccer, which concluded in 
December 2022. Also, training LLMs is a very expen-
sive process requiring expensive infrastructure like 
10,000 GPUs for ChatGPT. It is a batch process.

To circumvent these limitations and leverage more 
recent data, the user can insert, say the Wikipedia 
page on World Cup Soccer, in the API call to the GPT-3 
LLM. Now, the LLM can use this “model input” to 
answer your question. However, the size of this input 
is limited to 4K tokens for GPT-3 (almost 5 pages) to 
32K for GPT-4 (almost 40 pages).

Now, let’s pivot to business’ need where the 
requirement is to search enterprise data and generate 
fresh new insights. For the last few decades, the 
database management world has been divided up 
between transactional and analytical workloads. With 
the advent of AI-based search, a new category has 
emerged: contextual.

Let’s look at a marketing example. To increase customer 
conversion, your app analyzes all incoming data in real 
time, applies models to generate personalized offers 
and executes them while your users are in your app. 
You’d have to first extract the data from your 
transactional DB, extract, load and transform using a 
batch operation, run analytics in your OLAP engine and 
then finally create segments and generate offers.

Now you can ingest the data in real time, apply your 
models by reaching to one or multiple GPT services and 
action on the data while your users are in the online 
experience. These GPT models may be used for 
recommendation, classification personalization, etc., 
services on real-time data. Recent developments, such 
as LangChain and AutoGPT, may further disrupt how 
modern applications are deployed and delivered.

https://www.fierceelectronics.com/sensors/chatgpt-runs-10k-nvidia-training-gpus-potential-thousands-more
https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
https://www.singlestore.com/getstarted/


Value Chain to Use LLMs on Private Data (CON’T) 
To enable this, the following three-step process comprises preparing the data for vector search and enabling users.

Step 1. Prepare data for vector search

Eventually, we get to dwell on what a vector is. 
Conventional search works on keys. However, when 
the ask is a natural query, that sentence needs to be 
converted into a structure so that it can be compared 
with words that have similar representation. This 
structure is called an embedding. An embedding uses 
vectors that assign coordinates into a graph of 
numbers — like an array. An embedding is high 
dimensional as it uses many vectors to perform 
semantic search.

Without the embedding vectors, the LLM cannot 
extract the context of the prompt and relevantly 
respond. 

When a search is made on a new text, the model 
calculates the distance between terms. For example, 
searching for “king” is closer to “man,” than to “woman.” 
This distance is calculated using multiple options — 
cosine, dot product and Euclidean. The technology 
used for vector search includes ML algorithms such as 
nearest neighbors.

Databases used for AI workloads must enable the 
ability to convert their data into embedding vectors. 
These embeddings should be persisted in the database 
for faster lookup on similar prompts.

Let’s look at a workflow:
Ingest data into a database
You can do this using the standard ingestion techniques. In a 
RDBMS, this data will be loaded into tables. This ingest 
mechanism may be batch loads, but streaming ingest will give the 
ability to operate on the latest data. The destination may be a 
structured data type or a JSON data type.

Encode data
This step is used to convert unstructured data into embeddings. 
One option is to use an external API. For example,  OpenAI’s ADA 
and sentence_transformer have many different pre-trained models 
to convert unstructured data like images and audio into vectors.

Load embedding vectors
In this step, data is moved to a table that mirrors the original table 
but has an additional column of type 'vector,' JSON or a blob that 
stores the vectors. 

Harmonize data
This is a lightweight data transformation step to help with data 
quality and consistent content formatting. It is also where data 
may need to be enriched. The data may be converted into a list.  

This completes the back-end tasks for preparing the data to be used for vector search.

Performance tuning
Like any other database use case, a search has to be fine tuned. 
Some available options include:  
a. Compression for faster searching in memory. SingleStoreDB 

provides JSON_ARRAY_PACK
b. Index vector. This allows parallel scans using SIMD.
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https://docs.singlestore.com/managed-service/en/reference/sql-reference/vector-functions/json_array_pack.html


Value Chain to Use LLMs on Private Data (CON’T) 
To enable this, the following three-step process comprises preparing the data for vector search and enabling users.

Step 2. Perform vector search

The action now shifts to the front end — or to the 
consumer who is using a chat bot like ChatGPT — to ask 
a question. The question, or the prompt is in natural 
language, which needs to be converted into a vector 
first. This is done through a call to an LLM like GPT-3.

Next, you want to search enterprise data first to find 
matches, enrich it with additional context and leverage 
the LLM for the second time. As we saw earlier the 
payload, or tokens, that can be passed to the LLM are 
limited (with GPT-4, which is still not publicly 

Step 3. Leverage the LLM

With the matches made from our databases, data 
warehouses or the lake houses, we now want the LLM 
to perform, say, a recommendation. The matches are 
sent to the LLM APIs.

When ChatGPT was first introduced, many 
organizations banned it as the model inputs were being 
used by OpenAI to train or improve models. In a new 
updated data usage policy, effective March 2023, OpenAI 
no longer uses users’ data for training 
purposes. 

It does retain the data for 30 days but only for legal 
reasons, after which the data is deleted.

8 Key Characteristics of 

DBMS to Support AI Workloads

The LLM completes users’ requests and sends the 
response back. 

In the final section of this paper, we’ll look at key 
criteria to leverage LLMs.

A natural language query performs a similarity search on a large corpus of data within an enterprise to generate 
relevant prompts to the various LLMs. The search utilizes vectors and hence, the DBMS engine must enable low 
latency and highly scalable queries.

The world of LLMs is expanding at a very rapid clip. Some models are completely open source, while others are semi 
open but have commercial APIs. This document does not explore the ever-expanding AI ecosystem, but provides 
guidance on how to evaluate a new or existing database to handle your new AI workloads. 
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available to everyone at the time of writing this article, 
you can send up to ~40 pages of data as context). So 
doing a vector search of the user input with the 
corporate database will reduce the amount of data we 
need to send to the LLM. 

By using a contextual database, it is possible to mix a 
traditional keyword search that joins various tables 
with a vector search before sending that request to 
the LLM. 

https://openai.com/policies/api-data-usage-policies


DBMS to Support AI Workloads (CON’T) 
8 Key Characteristics of 

The essential capabilities needed to deliver AI workloads are shown in the following figure:
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Figure 3: Key characteristics of DBMS to deliver AI workloads 

Ingestion/Vectorization

As mentioned earlier, training data for LLMs like GPT-4 was based on data until Sept 2021. Without enhancements, 
like the ‘browser plug-in’, the responses are outdated. Organizations expect to make decisions on the freshest data. 
Hence, the ingestion capabilities of a database must include capabilities to:

•  Ingest, process and analyze multi-structured data. 
Typically structured and semi-structured data, like JSON 
documents, are injected directly into the database. But for 
unstructured data, usually only the metadata is ingested. 
•  Ingest batch as well as real-time streaming data, including 
the ability to easily pull data (up to millions of events per 
second) from diverse data sources including Amazon S3, 
Azure Blobs, HDFS or a streaming service like Kafka.

Storage

Raw data ingested into a database gets stored in its raw data structure which can range from relational to graph, 
JSON document, time-series or key-value. But what happens to the embedding vectors and how do they persist?

•  Call the APIs or user defined functions to convert 
the data to vectors. These vectors may be converted 
into a binary representation using json_array_pack 
before they are loaded into a table.
•  Load the vector data into the table and optionally 
index the vectors for fast vector (similarity) searches.

A RDBMS has the advantage of performing the preceding tasks in the more familiar SQL. 

1

2

Convert to Vectors



DBMS to Support AI Workloads (CON’T) 
8 Key Characteristics of 
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Just like the NoSQL debate on whether it's better to have 
a specialized vector data structure, the question around if 
multi-model databases can be equally efficient has risen 
again. After almost 15 years of NoSQL databases, it is 
common to see a relational data structure store a JSON 
document natively. However, initial incarnations of 
multi-model databases stored JSON documents as a blob.
 
While it is too early to say whether a multi-model 
database is equally adept at storing vector embeddings as 
a native vector database, we expect these data 
structures to converge. Databases like SingleStoreDB 
have supported vector embeddings in a BLOB column 
since 2017. 

Vector embeddings can quickly grow in size. As 
vector searches run in memory, it may not be 
practical to store all the vectors in memory. 
Disk-based vector searches are not performant. 
Hence, the database must have the ability to index 
the vectors and store them in memory, while the 
vectors themselves are on the disk. 

Performance (Compute and Storage)

The performance aspect is multi-pronged: 
 •  Vectorization speed 
 •  Vector search latency 
 •  Prompt caching

It is common to see databases with very large numbers of 
vectors. As mentioned earlier, an important aspect of 
performance tuning is the ability to index the vectors and 
store them in memory.

Searching for nearest-neighbor vectors can be very taxing if 
there are millions of vectors whose distance (Euclidean) or 
angle (Cosine) must be calculated. The question that raises 
is: how many neighbors should be searched? KNN specifies 
an exact number (‘K’) but identifying those K neighbors can 
be CPU intensive. Approximate Neural Network (ANN) 
algorithms help in reducing the range of neighbors to 
compare with. 

All this is fine from the algorithm aspect, but what are the 
database capabilities? The database should be able to shard 
the vectors into smaller buckets so they can be searched in 
parallel and leverage hardware optimizations, like SIMD. 
SIMD can achieve fast and efficient vector similarity 
matching — without the need for parallelizing your 
application or moving lots of data from your database into 
your application. 

For example, in a test described in one of the recent 
blogs, the database could process 16 million vector 
embeddings within five milliseconds to do image match-
ing and facial recognition.  

If LLMs are fed a very large number of embeddings, then 
the latency for responses will accordingly be very high. 
The purpose of using a database as an intermediary is to 
perform an initial vector search and determine a smaller 
embedding to be sent to the LLM. 

Caching of prompts and responses from LLMs can 
further improve performance. We have learned from 
the BI world that most questions asked in an 
organization are frequently repeated.

Storage2

3

https://www.singlestore.com/blog/image-matching-in-sql-with-singlestoredb/


DBMS to Support AI Workloads (CON’T) 
8 Key Characteristics of 
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Cost can become the biggest impediment to mass adoption of LLMs. We have already established in this document 
that we are not talking about the prohibitive cost of training an LLM, but are concerned with deploying a database 
to help make API calls to LLMs.

 As in any data and analytics initiative, it is imperative to calculate the total cost of ownership (TCO):

1. Infrastructure cost of the database. This includes 
licensing, pay-per-use, APIs, licenses, etc.

2. The cost to search the data using vector embeddings. 
Typically, this cost is higher than the conventional cost of 
full-text search as extra CPU processing is needed to 
create the embeddings.
  

3. Skills and training. We have already seen the 
creation of the “prompt engineer” role. In addition, 
Python and ML skills are essential to prepare the 
data for vector searches.  

Eventually, we expect FinOps observability vendors will add capabilities to track and audit vector search costs.

Data Access

Semantic searches rely on natural language processing 
(NLP) to ask questions — meaning end users' reliance on 
SQL diminishes. It is quite possible that LLMs replace BI 
reports and dashboards. Also, a robust infrastructure to 
handle APIs becomes critical. The APIs may be the 
traditional HTTP REST or GraphQL. 

However, in a database that supports traditional 
OLTP and OLAP, use of SQL can allow mixing 
traditional keyword (i.e. lexical) search with the 
semantic search capabilities enabled by LLMs.

Deployment, Reliability & Security

The organization’s overall data infrastructure strategy 
should dictate the debate over whether to use a 
self-managed database or a fully managed SaaS 
offering. It should not be any different for a database 
that supports the AI workloads.

We had mentioned earlier that vectors should be 
sharded to improve the performance of vector 
searches. This approach is used by database vendors 
to also improve reliability as the shards run in pods 
orchestrated by Kubernetes. In this self-healing 
approach, if a pod fails, it is automatically restarted.

Database vendors should also geo distribute shards to 
different cloud providers or different regions within a 
cloud provider. This solves two concerns — reliability 
and data privacy concerns.

A common concern is confidentiality of data. 
Organizations need the chatbot or the API to the 
LLM to not store the prompts and retrain their 
model. As mentioned earlier, OpenAI’s updated data 
usage and retention policy addresses this concern.

Finally, the vector search and the API call to the 
LLM must perform role-based access control 
(RBAC) to maintain privacy, just like in conventional 
keyword search.

Cost4

5
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DBMS to Support AI Workloads (CON’T) 
8 Key Characteristics of 

A database that supports AI workloads must have integration with the larger ecosystem. These include:

•  Notebooks or IDEs to write code that will enable 
the AI value chain steps described earlier in this 
document.

•  Existing MLOps capabilities from cloud providers, 
like AWS, Azure and Google Cloud as well as 
independent vendors. In addition, support for 
LLMOps is starting to arise.

The modern application space is getting redefined by the ability to chain various LLMs. This is clear in the rise 
of LangChain, AutoGPT and BabyAGI.

User Experience

Ecosystem Integration7

8

•  Libraries to generate embeddings, such as 
OpenAI and HuggingFace. This is a quickly 
expanding space with many open-source and 
commercial libraries.

The debate over which is the best technology to use for a specific task is often resolved by the speed of adoption. 
Technologies that have superior user experience often prevail. This experience is across various vectors (no pun 
intended):

•  Developer experience — the ability to write code 
to prepare the data for AI workloads

•  Consumer experience — ease of generating the 
right prompts

•  DevOps experience — ability to integrate with 
the ecosystem and deploy (CI/CD)

Database providers must provide best practices for all the personas interacting with their offering. 

Summary

Generative AI space is nascent and a work in progress.

This document captures the essence of what is needed to accomplish the promises of semantic 

searches and the technologies that undergird the ecosystem. The focus, however, is primarily on the 

database aspects needed by organizations to harness the power of LLMs on proprietary data. 

Of course, no organization wants to take shortcuts in their race to AI maturity. The guiding principles 

that apply to other data management disciplines should still be adhered to. We hope this document 

helps in demystifying the concepts needed to leverage AI workloads and provides guidance on how to 

choose the optimal database technologies.

Get started with SingleStoreDB today 

https://www.singlestore.com/getstarted/



